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INTRODUCTION

Pacific coast Sebastes spp. (rockfishes) are a wide-
ranging and diverse genus comprising at least 65 spe-
cies that occupy most benthic habitats from shallow
estuaries and kelp forests to muddy slopes at 1500 m
depth (Love et al. 2002). Several life-history character-
istics (e.g. slow growth, longevity sometimes >100 yr,
and delayed sexual maturity; Love et al. 2002) make
most rockfish populations particularly vulnerable to
high levels of fishing mortality. Ap proximately 40 spe-
cies of rockfishes dominate deep-water fish assem-
blages in rocky habitats off California (Love & Yokla -
vich 2006) and support valuable recreational and
commercial fisheries that have been ongoing since
the mid-1800s (Love 2006, Miller et al. 2014).

Populations of 6 species of rockfishes currently
are being rebuilt after having been classified as

overfished by the National Marine Fisheries Service
and Pacific Fishery Management Council (PFMC
2011). Rebuilding plans for overfished stocks are
required in accordance with the US Sustainable
Fisheries Act of 1998 (16 U.S.C. § 1854[e][2]), which
highlights the importance of identifying the physical
and biological habitat factors that influence the dis-
tribution and abundance of these fish species. A
number of manage ment actions have been taken to
support the rebuilding of rockfish stocks, including
time and area closures, fishing gear modifications,
minimum stock size thresholds, and catch and size
limits. Timely stock assessments are needed to sup-
port these management actions (Punt & Ralston
2007, Ralston & MacFarlane 2010), yet only 25 of
the 59 federally managed rockfish species have
been assessed (www.pcouncil.org/groundfish/stock-
assessments/).
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ABSTRACT: Understanding the association between components of habitat and fish distribution
and abundance is important in order to achieve accurate stock assessments. We developed gen -
eralized additive models (GAM) and spatially predictive maps of rockfish abundance at the
 individual species level using habitat descriptors collected from visual surveys and fine-scale
bathy metry. We advanced beyond presence/absence and presence only models to create predic-
tive maps of fish density (100 m−2) and biomass (kg 100 m−2) for Sebastes rosaceus (rosy rockfish)
and S. constellatus (starry rockfish), both common species in commercial and recreational fish-
eries along the central coast of California. Selected models included co-variables of seafloor
depth, complexity, substratum type, and heterogeneity. Predicted density and biomass of both
species were highest in areas of complex rock on the continental shelf off Points Lobos and Sur at
50−90 (S. rosaceus) and 80−120 m (S. constellatus) water depth. Our results will be useful both in
stock assessments of these data-poor species as well as in allocation of fishing effort, catches, and
other space-based management decisions.
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Sedentary rockfishes living in heterogeneous,
high-relief, rocky habitats are difficult to appraise
accurately with conventional methods such as
 bottom-trawl gear. Fishery-independent surveys
using non-extractive visual methods (e.g. from a
 submersible) are an effective means to assess and
monitor stocks in rebuilding status and provide the
opportunity to examine fish-habitat relationships at
finer spatial scales (1 to 5 m) than course (1 to 2 km)
benthic trawl gear (Anderson et al. 2009). For
instance, habitat-specific estimates of density and
biomass from visual surveys (Yoklavich et al. 2007)
are used in current stock assessments of S. levis
(cowcod).

Advances in seafloor mapping technologies, cou-
pled with recent developments in modeling ap -
proaches, support robust predictions of fish assem-
blages (Moore et al. 2010, Pittman & Brown 2011)
and individual species (Young et al. 2010). Rock-
fishes demonstrate strong affinities to high- and low-
relief rocky substrata at specific depths (Yokla vich et
al. 2000, Laidig et al. 2009, Love et al. 2009). Addi-
tionally, habitat complexity and position relative to
the surrounding seabed have further informed
 spatially predictive models of rockfish distributions
(Iampietro et al. 2008, Young et al. 2010). Predicting
rockfish density and biomass at the individual spe-
cies level, based on a variety of seafloor substratum
variables, provides important information to improve
the assessment of fish stocks in rebuilding status.

In this study, we developed spatially predictive
models and maps of abundance for S. rosaceus (rosy
rockfish) and S. constellatus (starry rockfish), typical
members of the mid-shelf fish assemblage on rocky
substrata off central California, USA (Love & Yokla -
vich 2006). Rosy rockfish geographically range from
the Strait of Juan de Fuca (Washington, USA) to
southern Baja California, Mexico, but are most abun-
dant from Cordell Bank off northern California to
northern Baja California (Love 2011). Starry rockfish
range from northern California to southern Baja Cali -
fornia, and are relatively abundant from central Cali -
fornia to southern Baja California. Juveniles and
adults of both species co-occur in the same depths
and substratum types. These are medium-size,
mostly solitary species (maximum length 36 and
46 cm for rosy and starry rockfish, respectively), and
moderately long lived (likely maximum age at least
401 and 32 yr for rosy and starry rockfish, respec-

tively) (Love et al. 2002). Both species are commonly
encountered in com mercial and recreational fish-
eries along the central coast of California (Love et al.
2002) and yet are considered to be data-poor stocks
(i.e. having only catch data available for assessments;
Dick & MacCall 2010).

Our overall goal was to model and map fish den-
sity (100 m−2) and biomass (kg 100 m−2) of S.
rosaceus and S. constellatus based on a variety of
seafloor descriptors. The recent availability of
detailed and accurate maps of substratum complex-
ity from multibeam-acoustic surveys of the seafloor
within California’s territorial waters (i.e. those data
coming from the California Seafloor Mapping Pro-
gram) made it possible to produce regional maps of
predicted density and biomass at scales that are
ecologically relevant to these species. These results
will improve our understanding of habitat variables
that influence the spatial distribution of these spe-
cies, advance their stock assessments, and find
application in the newly developed California Cur-
rent integrated ecosystem assessment (Levin &
Schwing 2011).

MATERIALS AND METHODS

Study area

Our study area was located largely within state
waters (3 nautical miles) off central California, USA,
including the southern portion of Monterey Bay,
Point Lobos, Point Sur, and Big Creek on the Big
Sur coast (Fig. 1). We focused our research efforts in
depths from 35 to 150 m, bracketing the depths of
occurrence for the 2 species of interest (Sebastes
rosaceus and S. constellatus), and across a range of
rocky habitats including extensive rock and boulder
fields (e.g. off the Point Lobos and Point Sur head-
lands), isolated rocky outcrops and pinnacles that
can be several meters high and surrounded by flat,
sandy seafloor, and on rock talus piles, scarps, and
ledges in the heads of submarine canyons along the
Big Sur coast. Water is relatively cool and produc-
tive along this section of the coast because the Cali-
fornia Current flows equatorward year round, and
substantial upwelling of cold deep water occurs at
the headlands, typically in spring and summer
(Hickey 1998). Commercial and recreational fishing
with various types of gear has been supported by
the diverse habitats on the continental shelf and
upper slope in this region for well over 60 yr (Love
et al. 2002).
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Data sets

Visual surveys of demersal fishes and components
of their habitats were conducted using a manned
submersible (Delta) during daytime hours from Sep-
tember to November in 2007 and 2008 (see Yoklavich
et al. 2000, 2002, 2007 for details on the Delta survey
vehicle and methods). Dives were positioned ran-
domly in areas of rocky substrata that were identified
from maps of bathymetry (Monterey Bay Aquarium
Research Institute Mapping Team, Monterey Bay
Multibeam Survey; Seafloor Mapping Lab, Califor -
nia State University Monterey Bay [SFML-CSUMB])
and from interpreted seafloor habitats (Yo klavich et
al. 1997, Eittreim et al. 2000). Surveys were con-
ducted by traversing haphazardly across substratum
types and depth gradients within designated rocky
habitats. Soft sediment was not specifically targeted,
but was surveyed along with rocky substrata on the
quantitative sample transects. The same general
areas were surveyed in 2007 and 2008, but transects
were not re-sampled from one year to the next. Sen-

sors mounted on the outside of the submersible
recorded time, depth (pressure), and altitude at 1 s
intervals throughout each dive.

A total of 304 strip transects 2 m wide were con-
ducted for 10 min each along the seafloor. A distance
within 1 m of the seafloor and a speed of 0.5 to
1.0 knots were maintained during the transect sur-
veys. The submersible’s position was tracked at 1 to
3 s intervals using an ORE Trackpoint II ultra-short
baseline (USBL) acoustic system (EdgeTech) and
WINFROG software (v3.1; FUGRO). A scientific navi -
gator aboard the support vessel directed the start of
a transect once the submersible arrived at the pre-
determined target depth and location, and tracked
the submersible in real time within ArcGIS relative to
bathymetric maps. The length (m) of each transect
was estimated using a Doppler velocity log (DVL)
(NavQuest 600 Micro) and ring-laser gyrocompass
(CDL MiniRLG 2) attached to the outside of the sub-
mersible. Two video cameras (one outside and one
inside the submersible) were used to visually docu-
ment each transect.

A pilot operated the submersible while an experi-
enced scientist identified, counted, and estimated
total length (TL, cm; using paired lasers spaced
20 cm apart) of all fishes within a transect. Fish den-
sity (100 m−2) and biomass (kg 100 m−2) for Sebastes
rosaceus and S. constellatus were calculated from
each transect. To calculate biomass, TL of fish was
converted to weight (g) using W = 0.0052 × TL3.386

(R = 0.98259) for S. rosaceus and W = 0.0097 × TL3.160

(R = 0.97805) for S. constellatus (Love et al. 1990).
The relationship between length and weight was
identical for males and females for both species.

Seafloor substratum types (mud, sand, gravel,
 pebble, cobble, boulder, continuous flat rock, rock
ridge and pinnacle top) were classified from the
video of each transect, based on geological defini-
tions detailed in Greene et al. (1999). Distinct habitat
patches, with a minimum duration of 3 s, were de -
fined by assigning primary (at least 50% of the area
viewed) and secondary (>20% of the area viewed)
substratum types each time a change was noted
along the transect.

The length of each patch was determined from
the DVL measurements. Primary substrata were
grouped based on levels of structural complexity
(Table 1). Pinnacle top, rock, and flat rock were clas-
sified as high complexity or large structured hard
substratum type (Lhard). Boulders, cobble, pebble,
and gravel were classified as medium complexity
hard substratum (Mhard). Sand and mud comprised
a soft substratum group (Soft) of low complexity.
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Fig. 1. Delta submersible survey locations in Monterey Bay
and along the Big Sur coast, off central California, USA



Mar Ecol Prog Ser 540: 235–250, 2015

An entire transect was characterized as a weighted
sum of the patch substrata (O’Farrell et al. 2009). For
substratum type b (b ∈ Lhard, Mhard, Soft), in tran-
sect t, the numerical value describing that substra-
tum’s contribution (S) was computed as:

(1)

where Lt,p represents the length of patch p in transect
t. The resulting transect length-weighted habitat
value characterized the 3 main substratum types (e.g.
Lhard, Mhard, Soft) for each transect. This value,
ranging from 0 (low complexity) to 0.7 (high com-
plexity), was used as a metric of habitat complexity
for each visual transect. Habitat heterogeneity was
estimated as number of habitat patches per transect
(Table 2).

Following our visual surveys, high-resolution multi -
beam data were collected throughout the entire
study area by the California Seafloor Mapping Pro-
gram (http://walrus.wr.usgs.gov/mapping/csmp). A
5 m resolution bathymetric Digital Elevation Model
(DEM) and a derived Rough/Smooth classification of
the seafloor were provided in grid format. Slope-of-
slope (i.e. habitat complexity) was derived from the
bathymetric grids using the ArcGIS Spatial Analyst
extension (ESRI) slope function to obtain the rate of
change of slope. Bathymetric position index (BPI)
was calculated using the Benthic Terrain Modeler
extension in ArcGIS. BPI is a second order derivative
of the multibeam bathymetry data and characterizes
a pixel in the bathymetric DEM as a positive (e.g.
pinnacle top) or negative (e.g. canyon) feature of the
surrounding seascape (Lundblad et al. 2006, Young
et al. 2010). BPI grid creation and classification was
applied using a scales of analysis at 5 pixel (25 m)
and 50 pixel (250 m) annulus thickness for fine and
broad respectively. Finally, the covariates were ex -
tracted for each transect using a 100 m radius  moving
window analysis in GIS.

Statistical analysis

Predictive models of fish density (100m−2) and bio-
mass (kg 100m−2) of Sebastes rosaceus and S. con-
stellatus were developed using generalized additive
models (GAM; Pinheiro & Bates 2009, Zuur et al.
2009). These species are known to occur at specific
depths and on distinct substratum types (Love et al.
2002); we used the flexible GAM to accommodate
the expected non-linear responses of both species to
our co-variates. Two sets of models were developed:
(1) models based on the co-variables depth, a tran-
sect length-weighted value for the 3 substratum
groups (i.e. Lhard, Mhard, Soft), and habitat hetero-
geneity, which were collected during the visual sur-
veys, and measures of seafloor roughness, habitat
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Habitat image Habitat type and complexity

Habitat code: Lhard

Habitat description: 
pinnacle top, rock, flat rock

Level of complexity: high

Habitat code: Mhard

Habitat description: 
boulder, cobble, pebble, 
gravel

Level of complexity: medium

Habitat code: Soft

Habitat description: 
sand and mud

Level of complexity: low

Table 1. Habitat characterization groups from submersible 
survey video analysis

Co-variable      Description                                       Units                                                   Source                                   Range      Mean (SD)

Depth                Depth at start of transect                 meters                                                 Submersible sensor             25−315     137.4 (83.1)
Lhard*              Pinnacle top, rock, flat rock            length-weighted habitat value         Sb,t = ∑P [Sb,t,p × Lt,p/∑PLt,p]   0−0.7         0.4 (0.2)
Mhard*             Boulder, cobble, pebble, gravel      length-weighted habitat value         Sb,t = ∑P [Sb,t,p × Lt,p/∑PLt,p]   0−0.7         0.1 (0.1)
Habitat             Measure of seascape patchiness     # habitat patches on transect line    Video analysis                        1−57         18.2 (9.8)
heterogeneity

*The length-weighted habitat value was calculated using Sb,t = ∑P [Sb,t,p × Lt,p/∑PLt,p] based on O’Farrell et al. (2009)

Table 2. Environmental co-variables collected during visual surveys and used in generalized additive models (GAMs) of rockfish density 
and biomass
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complexity, and BPI derived from the high-resolution
multibeam bathymetry; and (2) models based only
on the co-variables derived from the multibeam
bathymetry. Calculations were computed using R
software and the mgcv package (Wood 2004) with a
Gaussian error distribution and an identity link. Data
exploration followed protocols described by Zuur et
al. (2010). Cleveland dotplots and boxplots were
used to determine the presence of outliers. Collinear-
ity was investigated between covariates using Pear-
son correlation coefficients, multi-panel scatterplots,
and variance inflation factors (VIF) (Montgomery &
Peck 1992).

Akaike’s information criterion (ΔAIC) and Akaike
weights (wi) were used to select the most parsimo-
nious models among all possible covariate combina-
tions (Burnham & Anderson 2002). We selected mod-
els based on lowest AIC values using the MuMIn
package (Barto  2011) and models having ΔAIC < 2
were combined using a weighted (wi) model aver-
age. We used k fold cross validation in which we split
the data into equal sized parts and then iteratively
used part of the data to fit the model and a different
part to test it (Hastie et al. 2009). We repeated each
k-fold cross validation process 500 times and exam-
ined the distribution of coefficient of determination.
Validation of the optimum model was accomplished
by inspecting homogeneity (plotting residual vs fit-
ted values) and independence (variogram of residu-
als and plotting residuals versus each covariate).

Spatially predictive mapping was conducted in
ArcGIS 10.1 using the Marine Geospatial Ecology
Tool (MGET; v0.8a48) (Roberts et al. 2010), which
integrates ArcGIS with the R statistical package (R
Development Core Team 2011). In MGET, the GAM
tool was applied to derive spatially predictive rasters
for rockfish density and biomass. Prior to predictive
mapping of the data for this analysis, data were ran-
domly split into ‘test’ (1/3) and ‘training’ (2/3) sets to
assess map accuracy. The training data sets were
used to create the predictive maps, and the test data
sets were applied to evaluate map accuracy assess-
ment using Kendall’s τ and Spearman’s ρ.

RESULTS

Spatial patterns of rockfish density and biomass

Sebastes rosaceus and S. constellatus density and
biomass data were used in our modeling efforts
based on a total of 304 transects covering 146000 m2

of seafloor that comprised 70% LHard (pinnacle top,

rock, and flat rock), 15% Mhard (boulder, cobble,
pebble, and gravel), and 15% Soft (sand and mud)
substrata at depths of 35 to 150 m. Average density
for S. rosaceus and S. constellatus was 3.42 (SE =
0.16) and 0.74 (0.06) fish 100 m−2, respectively. On
transects, the average biomass was 0.26 kg 100 m−2

(SE = 0.01) for S. rosaceus, and 0.14 kg 100 m−2 (0.01)
for S. constellatus. Density of both species was rela-
tively high on transects at Carmel Canyon, Point Sur,
and Sur Canyon sites (Figs. 2a & 3a). Spatial pattern
of S. rosaceus biomass was similar to that of density
along the Central California coast, with higher bio-
mass coincident with areas of greater habitat struc-
tural complexity off the Monterey Peninsula, Point
Lobos, and Point Sur (Fig. 2d). There were several
pockets of relatively high biomass of S. constellatus
along the central Californian coast, from the Mon-
terey Peninsula to Big Creek, the most southern
reaches of our study area (Fig. 3d). 

Modeling of Sebastes rosaceus density and biomass

The GAMs to predict fish density and biomass
were based on habitat co-variables from in situ visual
surveys and multibeam acoustic bathymetry. 

The selected GAM to predict S. rosaceus density
included depth and hard rock substrata with high
and medium complexity (wi = 0.99; Table 3). This
selected model accounted for 42% of the variability
in S. rosaceus density and had a mean R2 = 0.40 for
500 runs of 10-fold cross-validation. From response
curves, S. rosaceus density increased with depth
from 35 to ~70 m and then declined relatively steeply
in deeper waters (Fig. 4a). The response curves for
transect length-weighted habitat values indicated a
steady increase in predicted S. rosaceus density with
increasing complexity for both large (pinnacle top
and rock habitat, Fig. 4b) and medium-to-small
 substrata (boulder, cobble, pebble, gravel habitat,
Fig. 4c).

The selected GAM to predict S. rosaceus biomass
included depth, hard rock substrata with high and
medium complexity, habitat heterogeneity (e.g.
number of patches per transect), and BPI (wi = 0.81;
Table 3), and accounted for 46% of the biomass vari-
ability (mean R2 = 0.42). The response curves for
depth and both transect length-weighted habitat val-
ues (Lhard and Mhard) revealed the same patterns as
in the density response curves (Fig. 4d−f). From the
BPI response curve (Fig. 4g), biomass was lowest in
canyons and depressions (negative values of BPI)
and demonstrated an overall increase to high BPI
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Fig. 2. Sebastes rosaceus. Density and biomass off central California, USA: (a) graduated dots of observed  density; (b) pre-
dicted density throughout study area; (c) predicted density in enlarged map of area off Pt. Lobos; (d) graduated dots of ob-
served biomass; (e) predicted biomass throughout study area; and (f) predicted biomass in enlarged map of area off Pt. Lobos
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Fig. 3. Sebastes constellatus. Density and biomass off central California, USA: (a) graduated dots of  observed density; (b) pre-
dicted density throughout the study area; (c) predicted density in enlarged map of area off Pt. Sur; (d) graduated dots of ob-
served biomass; (e) predicted biomass throughout the study area; and (f) predicted biomass in enlarged map off Pt. Sur
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features (e.g. pinnacle tops). Biomass of S. rosaceus
was highest in areas of ~4 to 6 habitat patches per
100 m2 (Fig. 4h), with declining biomass in areas
of very low and high habitat heterogeneity (e.g.
patchiness).

Predictive maps of Sebastes rosaceus density
and biomass

The predictive maps for density and biomass were
based solely on co-variates derived from acoustic
multibeam bathymetry.

The selected GAM to create a predictive map of S.
rosaceus density accounted for 33% of its density
variability (R2 = 0.32). The model was based on a
weighted average of M1: S. rosaceus ~ Depth + BPI,
wi = 0.45 and M2: S. rosaceus ~ Depth + BPI + fac-
tor(Rough), wi = 0.28 (Table 3). Model-averaged re -
sponse curves for depth (Fig. 5a) and BPI (Fig. 5b)
had greater density values for the rough substratum
factor than for the smooth factor. In the response
curve for BPI, density was lowest in canyons and
depressions (similar to Fig. 4g), but also demon-
strated distinct peaks in density associated with
medium-relief habitat features (e.g. boulder fields)
and high BPI features (e.g. pinnacle tops) (Fig. 5b).

The selected GAM for S. rosaceus biomass predic-
tive map was a weighted model average M1: S.
rosaceus ~ Depth + BPI + Habitat Complexity, wi =
0.62 and M2: S. rosaceus ~ Depth + BPI + Habitat

Complexity + factor (Rough), wi = 0.27 (Table 3). This
model accounted for 38% of the biomass variability
(R2 = 0.35). Response curves for depth (Fig. 5c), BPI
(Fig. 5d), and habitat complexity (Fig. 5e) had greater
biomass values for the rough substratum factor than
for the smooth substratum factor. The response curve
for predicted biomass versus depth was similar to
that of the density curve, and demonstrated an
increase in S. rosaceus biomass from 35 to ~70 m and
a decrease in biomass at greater depth ranges
(Fig. 5c). In the response curve for BPI, S. rosaceus
biomass followed the same pattern as the density
curve and was lowest in canyons and depressions
and was characterized by distinct peaks in biomass
associated with low-relief habitat features (e.g. boul-
der fields) and high BPI features (e.g. pinnacle tops)
(Fig. 5d). Habitat complexity was not important for
modeling density, but for biomass this response
curve indicated a sustained increase in S. rosaceus
biomass with increasing complexity (Fig. 5e).

Predictive maps of S. rosaceus density (Fig. 2b) and
biomass (Fig. 2e) were produced based on the aver-
age of the top 2 models by weight. Spatial patterns of
biomass predicted across the study region were sim-
ilar to that of density, with higher biomass coincident
with areas of greater habitat structural complexity off
the Monterey Peninsula, Point Lobos (Fig. 2c,f), and
Point Sur. The highest predicted density and biomass
of S. rosaceus rockfish were mapped on the continen-
tal shelf at 50 to 90 m water depth off Point Pinos and
Point Sur. The predictive maps of S. rosaceus density
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Model type                Model selection results                                                                                                 ΔAIC                  wi

Models based on co-variables from both visual surveys and multibeam bathymetry
Density                    S. rosaceus ~ Depth + Lhard + Mhard                                                                        0                         0.99
Density                    S. rosaceus ~ BPI + Lhard + Mhard                                                                             28.65                  0.01

Biomass                   S. rosaceus ~ Depth + Lhard + Mhard + Habitat Heterogeneity + BPI                    0                         0.81
Biomass                   S. rosaceus ~ Depth + Lhard + Mhard + BPI                                                              3.71                    0.13
Biomass                   S. rosaceus ~ Depth + Lhard + Mhard + BPI + factor(Rough)                                   5.39                    0.01

Models based on co-variables derived from multibeam bathymetry                                                                                  
Density                    S. rosaceus ~ Depth + BPI                                                                                           0                         0.45
Density                    S. rosaceus ~ Depth + BPI + factor(Rough)                                                                0.96                    0.28
Density                    S. rosaceus ~ Depth                                                                                                      2.12                    0.15
Density                    S. rosaceus ~ Depth + factor(Rough)                                                                           2.49                    0.13

Biomass                   S. rosaceus ~ Depth + BPI + Habitat Complexity                                                      0                         0.62
Biomass                   S. rosaceus ~ Depth + BPI + Habitat Complexity + factor(Rough)                          1.69                    0.27
Biomass                   S. rosaceus ~ Depth + BPI + factor(Rough)                                                                 4.41                    0.07

Table 3. Results of model selection to predict Sebastes rosaceus density and biomass off central California for 2 sets of models:
(1) visual and bathymetry models and (2) bathymetry alone to support GIS-based predictive mapping. Models were ranked by
Akaike’s information criterion (ΔAIC) and Akaike weights (wi). Models having ΔAIC < 2 were combined using a weighted (wi)
model average and are in bold. Lhard = high complexity or large structured hard substratum (pinnacle top, rock, and flat
rock); Mhard = medium complexity hard substratum (boulders, cobble, pebble, and gravel); Soft = low complexity substratum 

(sand and mud)



Wedding & Yoklavich; Rockfish predictive mapping

and biomass had an accuracy of Spearman’s ρ = 0.63
and 0.66 and Kendall’s τ = 0.46 and 0.49, respectively. 

Modeling of Sebastes constellatus density 
and biomass

The selected GAM to predict S. constellatus den-
sity included depth and hard rock substrata with
high and medium complexity (wi = 0.99, Table 4), and
concluded in similar results to the S. rosaceus model.
The model accounted for 43% of the vari ability in S.

constellatus density (R2 = 0.41). From res ponse
curves, S. constellatus occurred deeper than S.
rosaceus, with relatively high densities in water
depths >80 m (Fig. 6a). Similar to S. rosaceus, the
response curves for transect length-weighted habitat
values indicated a steady increase in predicted S.
constellatus density with increasing complexity for
both large (pinnacle top and rock habitat, Fig. 6b)
and medium-to-small rocky substrata (boulder, cob-
ble, pebble, gravel habitat, Fig. 6c).

The model for S. constellatus biomass was a
weigh ted average of depth, hard rock substrata
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Fig. 4. Sebastes rosaceus. Response curves, based on habitat co-variables from visual surveys and acoustic multibeam bathy -
metry, for generalized additive model (GAM) predicted density versus (a) depth, (b) length-weighted habitat values in high-
relief rock (Lhard) and (c) length-weighted habitat values in low-relief rock (Mhard); and GAM-predicted biomass versus 
(d) depth, (e) length-weighted habitat values in Lhard, (f) length-weighted habitat values in Mhard, (g) bathymetric position
index (BPI), and (h) habitat heterogeneity. Solid lines = mean (±1 SE, dashed lines). Rug plots along the x-axis = calibration 

data points
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with high and medium complexity, habitat hetero-
geneity, and BPI (Table 4), which accounted for
54% of its variability (R2 = 0.40). The response
curves for depth (Fig. 6d) and one transect length-
weighted habitat co-variable (i.e. Mhard; Fig. 6f)
revealed the same patterns as in density response
curves for this species. However, the response curve
for the transect length-weighted habitat co-variable
Lhard (Fig. 6e), which characterizes highly complex
pinnacle top and rock, demonstrated an increase in
biomass to an intermediate level followed by a
steady increase at the highest complexity. As with
S. rosaceus, BPI was not an important co-variate in
the model that predicted density but was included
in the selected GAM to predict biomass for S. con-
stellatus; predicted biomass was lowest in subma-
rine canyons and depressions (negative values of

BPI) and peaked at low-relief habitat features (e.g.
boulder fields, Fig. 6g). The response curve for
habitat heterogeneity (Fig. 6h) demonstrated a dif-
ferent pattern than that of S. rosaceus biomass; pre-
dicted biomass of S. constellatus was greater in
areas of more homogenous habitat (i.e. low numbers
of habitat patches per m2).

Predictive maps of Sebastes constellatus density
and biomass

The selected GAM to predict S. constellatus den-
sity was a weighted average of depth, BPI and rough
substratum as a factor (Table 4). This model ac -
counted for 29% of the variability in predicted S. con-
stellatus density (R2 = 0.27). Density of S. constellatus
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Fig. 5. Sebastes rosaceus. Response curves, based on habitat
co-variables derived from acoustic multibeam bathymetric
surveys, for generalized additive model (GAM) predicted
density versus (a) depth and (b) bathymetric position index
(BPI); and GAM-predicted biomass versus (c) depth, (d) BPI,
and (e) habitat complexity with factor representing rough
substratum (red lines) and smooth substratum (blue lines).
Solid lines = mean (±1 SE, dashed lines). Rug plots along the 

x-axis = calibration data points
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peaked at 70 to 90 m in the response curves for depth
of both substratum types (Fig. 7a). The response
curve for BPI indicated that S. constellatus density
was lowest in canyons and depressions followed by a
steep increase to relatively low positive BPI values
that are associated with fine-scale habitat features
such as boulder or rocky substrata at higher elevation
relative to surrounding seascape (Fig. 7b). Density
increased even more at the highest BPI values, indi-
cating an association of S. constellatus with pinnacle
tops.

The selected GAM for S. constellatus biomass was
a weighted average of depth, BPI, habitat complex-
ity, and rough substratum as a factor (Table 4). This
model accounted for 32% of the variability in S. con-
stellatus density (R2 = 0.23). From response curves of
co-variates depth (Fig. 7c), BPI (Fig. 7d), and habitat
complexity (Fig. 7e), S. constellatus biomass was
greater for the rough substratum factor than for the
smooth factor. Peak biomass of S. constellatus was
predicted at deeper depth (i.e. ~100 m) than that of
peak density (~80 m). The response curve for BPI
indicated that S. constellatus biomass was lowest in
canyons and depressions followed by a sharp peak
associated with fine-scale habitat features that rise
slightly above the surrounding seascape (Fig. 7d).
The habitat complexity response curve indicated an
increase in S. constellatus biomass with increasing
habitat complexity.

The accuracies of the predictive maps of S. constel-
latus density and biomass were characterized by

Spearman’s ρ = 0.36 and 0.63 and Kendall’s τ = 0.53
and 0.46, respectively. Spatial patterns of predicted
biomass of S. constellatus were highest in areas of
complex rock off Point Lobos (Fig. 3e) and Point Sur
(Fig. 3e,f); these areas were also associated with high
predicted biomass of S. rosaceus. 

DISCUSSION

Until recently, predictive habitat-based models and
maps of demersal marine fish distribution had been
largely developed from presence/absence or pres-
ence-only fish data (Iampietro et al. 2008, Young
et al. 2010). In this paper, we attempt to advance
beyond presence/absence and presence only models
to develop predictive regional maps of rockfish den-
sity and biomass at the individual species level in a
temperate ecosystem. There have been a number of
spatially predictive mapping and modeling studies in
tropical ecosystems. Costa et al. (2014) integrated
habitat data from acoustic sensors (i.e. splitbeam and
multibeam echosounders) in the US Virgin Islands to
predict fish density, and found the model performed
best at larger body sizes (≥29 cm) to identify fish
aggregations and help coastal managers prioritize
areas of higher conservation value. Pittman & Brown
(2011) similarly developed predictive maps for sev-
eral key fish species associated with Caribbean coral
reef seascapes and found that habitat complexity
derived from Light Detection and Ranging Data
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Model type                Model selection results                                                                                                 ΔAIC                  wi

Models based on co-variables from both visual surveys and multibeam bathymetry
Density                    S. constellatus ~ Depth +Lhard +Mhard                                                                     0                         0.99
Density                    S. constellatus ~ BPI +Lhard + Depth                                                                          33.01                  0.01

Biomass                   S. constellatus ~ Depth + Lhard +Mhard+ Habitat Heterogeneity + BPI               0                         0.60
Biomass                   S. constellatus ~ Depth +Lhard +Mhard + BPI                                                          1.48                    0.29
Biomass                   S. constellatus ~ Depth +Lhard +Mhard + BPI + factor(Rough)                                3.45                    0.10

Models based on co-variables derived from multibeam bathymetry                                                                                  
Density                    S. constellatus ~ Depth + BPI                                                                                      0                         0.72
Density                    S. constellatus ~ Depth + BPI + factor(Rough)                                                          1.94                    0.27
Density                    S. constellatus ~ Depth                                                                                                 23.14                  0.01

Biomass                   S. constellatus ~ Depth + BPI + Habitat Complexity                                                0                         0.54
Biomass                   S. constellatus ~ Depth + BPI + Habitat Complexity + factor(Rough)                    0.36                    0.45
Biomass                   S. constellatus ~ Depth + Habitat Complexity                                                           7.71                    0.01

Table 4. Results of model selection to predict Sebastes constellatus density and biomass off central California for 2 sets of
 models: (1) visual and bathymetry models and (2) bathymetry alone to support GIS-based predictive mapping. Models are
ranked by Akaike’s information criterion (ΔAIC) and Akaike weights (wi). Models having ΔAIC < 2 were combined using a
weighted (wi) model average and are in bold. Lhard = high complexity or large structured hard substratum (pinnacle top,
rock, and flat); Mhard = medium complexity hard substratum (boulders, cobble, pebble, and gravel); Soft = low complexity 

substratum (sand and mud)
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(LiDAR) contributed most to the spatial model of
habitat suitability for Stegastes planifrons (threespot
damselfish). Habitat complexity, particularly the
slope of the slope (a measure of the maximum rate of
slope change) was found to be the most useful pre-
dictor of diversity and abundance of fishes and corals
in the Caribbean (Pittman et al. 2009).

Many rockfish species demonstrate habitat prefer-
ences for complex rocky substrata (Love & Yoklavich
2006, Love et al. 2009). Young et al. (2010) applied
generalized linear models to predict the highest

probability of occurrence (presence/ absence) of Se -
bastes rosaceus in high relief rocky areas of Cordell
Bank on California’s northern coast, with habitat
complexity included as a strong predictor in these
models. We found densities of S. rosaceus and S. con-
stellatus to have similar patterns of habitat affinity in
relation to fine-scale remotely sensed measures of
habitat complexity. We also found that intermediate
levels of habitat heterogeneity were important in
explaining S. rosaceus variability across the seascape
and to demonstrate the importance of composition
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Fig. 6. Sebastes constellatus. Response curves, based on habitat co-variables from visual surveys and acoustic multibeam
 bathymetry, for generalized additive model (GAM) predicted density versus (a) depth, (b) length-weighted habitat values in
high-relief rock (Lhard) and (c) length-weighted habitat values in low-relief rock (Mhard); and GAM-predicted biomass
 versus (d) depth, (e) length-weighted habitat values in Lhard, (f) length-weighted habitat values in Mhard, (g) bathy metric
 position index (BPI), and (h)  habitat heterogeneity. Solid lines = mean (±1 SE, dashed lines). Rug plots along the x-axis = 

calibration data points



Wedding & Yoklavich; Rockfish predictive mapping

and configuration of habitat features. Further, the
BPI co-variable highlights areas in the seascape that
are tops of large pinnacles or rocky outcrop features
adjacent to canyons (e.g. Point Pinos and Point Sur).
Anderson & Yoklavich (2007) reported S. rosaceus
rockfishes were found in groups of other large-
 bodied rockfishes (e.g. S. paucispinis, S. flavidus, S.
rubrivinctus, and Sebastomus spp.) with strong asso-
ciations to high-relief rocky outcrops. In addition to
the refuge provided by structurally complex habitat,
relatively productive waters associated with rocky
pinnacles and outcrops in and adjacent to canyons
could support greater fish biomass.

The visual survey methods used in this study can
be more effective than extractive trawl surveys in
estimating abundance of rockfish species living in
high-relief rocky areas. As with all survey methods,
there are several assumptions and sources of uncer-
tainty associated with visual surveys. We have criti-

cally evaluated several of these assumptions using
similar survey techniques in prior field surveys
(Yoklavich et al. 2007, Laidig et al. 2013). The strip
transect method used in our study assumes 100%
detection of the target species within the strip. To
help meet this assumption, we used a relatively nar-
row strip width (2 m) during our surveys. That said, it
is unlikely that 100% of S. rosaceus and S. constel -
latus were seen in the transects, particularly the
smallest individuals nestled in the rocky substrata.
This would result in an underestimation of densities
by some unknown amount. Additional studies will be
required to estimate true detectability of these spe-
cies in high-relief habitats.

Another important assumption of these underwater
surveys is that rockfish behavior is independent of
the observer and submersible (i.e. no avoidance or
attraction). Laidig et al. (2013) reported that 6 and
10% of S. rosaceus near (total n = 134) and on (n = 10)

247

Fig. 7. Sebastes constellatus. Response curves, based on
habitat co-variables derived from acoustic multibeam bathy-
metric surveys, for generalized additive model (GAM) pre-
dicted density versus (a) depth and (b) bathymetric position
index (BPI); and GAM-predicted biomass versus (c) depth,
(d) BPI, and (e) habitat complexity with factor representing
rough substratum (red lines) and smooth substratum (blue
lines). Solid lines = mean (±1 SE, dashed lines). Rug plots 

along the x-axis = calibration data points
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the seafloor, respectively, reacted mostly by swim-
ming toward or to the left of the Delta submersible
during surveys off central California. Sebastes con-
stellatus reacted similarly, with 5 and 8% of fish near
(n = 21) and on (n = 13) the seafloor responding to the
survey vehicle2. Both species moved an average dis-
tance of 2 to 3 m per reaction. This type of reaction
could bias estimated densities if the fish entered or
exited the strip transect; otherwise, these relatively
small movements would not influence the resultant
densities. In addition, the assumption that the fish are
distributed randomly with respect to the transect was
met by randomizing survey sites and traversing hap-
hazardly across substratum types and depth gradi-
ents within designated rocky habitats.

There also are potential sources of error related to
fish measurements. In an earlier study (Yoklavich et
al. 2007), we estimated error associated with our
underwater estimates of fish size. From the sub-
mersible we measured fish replicas of known total
length, and size generally was underestimated by a
relatively small amount (mean ± SD deviation: −1.1 ±
1.2 cm). This would result in an underestimate of bio-
mass. Biomass estimates also contain some unknown
amount of error related to the conversion of length to
weight. However, the regression of weight and
length (Love et al. 1990) provided an excellent fit for
both of our target species, so the amount of error
introduced using length to calculate weight is ex -
pected to be small.

Further, our research is limited by the temporal and
spatial extent of the study. Our visual surveys were
conducted only in Fall (September to November) of
2007−2008, and we did not expect a seasonal effect
in abundance because these sedentary rockfish spe-
cies are not known to be wide-ranging (Love et al.
2002). However, repeating these surveys to establish
time series in density and biomass over several years
would allow us to evaluate change in rockfish abun-
dance across the region as well as inside and outside
marine protected areas (MPA). In particular, this
study represents a baseline for monitoring the deep-
water portion of 8 MPAs that were established on the
central coast coincident with the commencement of
our surveys in September 2007. With future monitor-
ing, we will be able to include an MPA term in the
models to evaluate the efficacy of these closed areas
in protecting deep-water species of rockfishes. The

geographic scale of our study could also be expanded
to include data from our visual surveys in rocky areas
of southern California where both target species are
common.

We developed 2 sets of models in this study: one set
based on co-variables from both the visual surveys
and region-wide high-resolution bathymetry and the
other set of models based only on co-variables de -
rived from the bathymetry. Our motivation was to
examine the added value of data collected in situ
from a submersible compared to that collected solely
from acoustic surveys. The models using all of the co-
variates (including those from the visual surveys)
accounted for more of the overall variance (42 to
54%) in estimated density and biomass for both spe-
cies than those using only derived variables from
multibeam bathymetry (29 to 38%). Clearly data
from the visual surveys improved the predictive
capabilities of the models. However, in order to apply
predictions on a region-wide scale, only the bathy-
metric co-variates could be used because in situ data
were not available on a broad scale.

Benthic terrain analysis of multibeam bathymetric
acoustic data is a valuable way to identify seafloor
habitat that supports individual species and assem-
blages (Wilson et al. 2007, Guinan et al. 2009). Quan-
tifying and mapping elements of rockfish habitat,
such as seafloor substratum type, texture, and com-
plexity, are critical for evaluating the effectiveness of
these areas to maintain rockfish stocks (Yoklavich et
al. 2000, 2007). Our ability to derive indices of ben-
thic habitats (e.g. habitat complexity, depth, BPI)
from multibeam acoustic data3,4 that were recently
synthesized across California state waters supports
the production of spatially predictive maps of demer-
sal fish populations at a regional scale relevant to the
assessment of fish stocks in rebuilding status. Fur-
ther, providing a spatial component to these predic-
tions can be critical in the management of relatively
sedentary rockfish species to safeguard against local
depletion (Parker et al. 2000).

Currently it is challenging to integrate oceano-
graphic and benthic habitat predictor variables into
habitat models and maps, largely because the spatial
resolution of available oceanographic data (e.g. tem-
perature, salinity, and bottom currents from regional
oceanographic modeling systems [ROMS]) is 10s of
km, and the resolution of the benthic habitat data is
several orders of magnitude greater (<1 m from
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3http://walrus.wr.usgs.gov/mapping/csmp/
4http://seafloor.otterlabs.org/csmp/csmp.html

2Pers. comm., T. Laidig, Fisheries Ecology Division, South-
west Fisheries Science Center, NOAA, 110 Shaffer Rd.,
Santa Cruz, CA 95060, USA
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visual surveys and 2−5 m from multibeam acoustic
surveys of bathymetry). Our models were developed
only with benthic habitat predictors. How ever, the
inclusion of oceanographic variables could further
improve the predictive capability of our models and
maps when these data become available at finer
 spatial scales.

Rockfishes are among the most valuable fisheries
in California, have extremely vulnerable life-history
characteristics, and cannot sustain levels of fishing
mortality; as a result, they are being managed more
conservatively than in the past. The predictive maps
of density and biomass of S. rosa ceus and S. constel-
latus will improve our understanding of habitat vari-
ables that influence the spatial distribution and
abundance of these species across the central coast.
The results of our study  provide information to sup-
port stock assessments of these 2 species of rock-
fishes, both considered to be data-poor species by
the PFMC. For example, using our predictive maps
of biomass, stock assessors could estimate total bio-
mass (and associated uncertainty) of these species
within our designated study area off central Califor-
nia and consider those estimates in context with
assessments based solely on commercial and recre-
ational landings (Dick & MacCall 2010,  Ralston et
al. 2010). Such estimates of habitat-specific abun-
dance are critical to effectively control the magni -
tude of fishing mortality and to support the local
recovery of depleted populations.

CONCLUSIONS

In this study we developed models of rockfish den-
sity and biomass based on in situ observations of fish
numbers, size, and associated seafloor substratum
variables and derived variables from region-wide
multibeam bathymetry. Model results were ex pres -
sed as predictive maps of density and biomass on a
regional scale. Such maps allow us to quantify habi-
tat capacity, prioritize habitat conservation, and eva -
luate potential risk of various human activities to
rockfish populations over broad spatial scales. These
results have direct application to coastal and marine
spatial management, particularly in (1) the design
and monitoring of MPAs, (2) improving the identifi-
cation of essential fish habitats, (3) distinguishing
those areas important to the restoration or rebuilding
of depleted stocks, and (4) advancing our under-
standing of the effects of a changing climate on the
spatial distribution and abundance of Pacific coast
groundfishes.
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